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FORCES BETWEEN SURFACES WITH SURFACE-SPECIFIC INTERACTIONS
IN A DILUTE ELECTROLYTE

Rudi PODGORNIK'!
National Institutes of Health, Bethesda, MD 20892, USA
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We have investigated the forces between two surfaces, immersed in a dilute electrolyte solution, interacting specifically with the
ions that are in their immediate vicinity. It is found that at large separations the free energy decays exponentially (the decay length
being approximately half the Debye length) with separation, while the magnitude of the force depends on the physical properties
of the surfaces and their interactions with the nearby ions. This long-range attractive force could well represent a case for the
electrostatic nature of the surface-specific very long-range “hydrophobic” interaction.

1. Introduction

Recently [1] considerable effort has been directed towards understanding of forces between surfaces bearing
laterally mobile charges interacting across a medium described solely by its dielectric constant. In this con-
tribution we have analysed the forces between surfaces with which the charges can interact specifically while
interacting electrostatically through the intervening medium, an uni-uni valent electrolyte of known ionic
strength and dielectric constant. This system is in many respects similar to those studied before [1] but also
exhibits features that were previously not adequately percieved.

We supposed (fig. 1) that in the immediate vicinity of the two originally uncharged surfaces separated by
2a and located at the points of dielectric discontinuities z= % a, where z is the coordinate axis perpendicular
to the surfaces, there is a regime of space of transversal dimension { where mobile charges of both signs ex-
perience specific interactions with the surface, with energies £+ and E -, respectively. These short-range in-
teractions can model the changed local aqueous environment brought by the hydrophobic nature of the sur-
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% I } % { face separation, we can assume that only the surface energy of

-a ta the system is perturbed by the interactions.
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faces. To make the model analytically tractable we took the limit {—0 41 This limit furthermore implies that
specific interactions are limited to the surfaces at z=*a, therefore contributing only to the surface free energy
of the system. The ionic density fluctuations due to specific interactions of ions with the surface, limited only
to the space near the surface could well be the cause of the “long-range hydrophobic interactions” as argued
recently [2].

In our analysis of the problem we took advantage of the recently introduced [3] extended Poisson-Boltz-
mann approximation. It consists of a transformation by means of which it is possible to write the grand ca-
nonical partition function in terms of a functional integral over local electrostatic potentials. We developed
the action of the integral up to second order in terms of local electrostatic potential in the vicinity of its mean-
field (Poisson-Boltzmann) value. The thermodynamic potential derived from the functional integral repre-
sentation of the partition function will decouple into two terms: the mean-field and the fluctuation part. The
latter was investigated in the asymptotic regime of large intersurface separations.

2. Analysis

Our system is composed of 2N mobile monovalent charges of both signs, occupying the space |z] €oo. As
stated above the specific interactions between the mobile ions and the surfaces, presumably localised in the
vicinity of the surfaces, were assumed to occur only at z= *a. The dielectric constant in the whole region of
interest was taken as € (the image effects will therefore not be dealt with). The grand canonical partition func- ?1 1
tion in the form of a functional integral was derived in detail in ref. [3]: '

2nB)" S
== [—deT%(l["i')"—W/_z JJ exp(— (_kl;gl) de(r,) ... do(rn), (1)

(2N)

where det u(r, r') is the functional determinant of the electrostatic interaction potential u(r, r'), ¢(r) is the
local value of electrostatic potential, A is the thermal energy (B~'=kT), and e, is the electron charge. The g
action S is given by g |

S(ey) =3e€ J(grad ®)? d3r+ij 2z, ch(Peyp(r)) d>r+ Jf((o) d?r, (2)

with z, the bulk activity of the ions and ¢, the permittivity of vacuum. We have not explicitly written down
the surface part of the free energy f(¢). If there are no specific interactions at the surface, then flp) =09, as
shown in ref. [3], where o is the surface charge density. In the case of specific interaction with energies E*

and E - we can derive the form

flp)=kTn,In[1+z; exp(—eop/kT)] +kTn In[1+z] exp(eop/kT)],

with n, being the surface density of the interaction sites while z* =exp(—E */kT). In what follows we did not
limit ourselves to any particular form of the surface part of the energy density, leaving our analysis as general

as possible. 3
Since the action in eq. (1) is non-linear, no closed analytical expression is available for Z. However, a rea- §

sonably good approximation scheme proposed recently [3] consists in developing the non-linear action up to
the second order in the deviations of ¢(r) from its mean-field (i.e. Poisson-Boltzmann) value, determined §

by the stationary value of the action, ie.
9°S
dg(r) dp(r’)

5=5(¢pa(2))+%j dp(r) dp(r') d’rd’r’, (3)

opPB(Z)

1 The meaning of this limit is that { is much smaller than the intersurface separation 2a.
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where @pp(z) is obtained from

65/(’3{0(")|wpa(.—)=0~ (4)

The above condition is easily seen to lead to the standard Poisson-Boltzmann equation in the planar geometry
(depending only on the z coordinate), plus a boundary condition of a charge regulation type [4] depending
on the form of the surface part of the free energy f(p). The grand canonical partition function can be therefore
reduced to the Gaussian integrals that can be, at least in principle, evaluated exactly.

We shall not give details of the derivation. The final expression for the thermodynamic potential, defined
as Q= —kT'In Z| is obtained as a sum of two terms. The first one is nothing but the mean-field free energy,
given by the standard form as the energy per unit surface area (A4),

/%2 =—3€€ J (%) dZ—ij 2z, ch(feopps) dz—f(pps). (5)
¢ in the above equation is nothing but the Poisson-Boltzmann solution depending only on the transversal co-
ordinate (z).

The other part of the thermodynamic potential, corresponding to the fluctuations of the electrostatic po-
tential around its mean-field value (evaluated in the harmonic approximation, cf. eq. (3)), can be obtained
[3] in the form of a coupling constant integral

pel
Qe =4%kT J duTr[p(r') R,(r,r')+2p,(a) 6(z—a) R, (r,r)], (6)

0

where Tr is the trace operator, §(r) is the Dirac delta function, p(r) is the local charge density p(r)=
p(z)=2z,ch(eofyrs(z)), u the coupling parameter and

ps(a)=—(kT/e5) 9°f/ 30> | yp. (7)
The Green function R, (r, r') is obtained as the solution of

€6VR(r,r')—pup(r) R (r,r')==8(r—r'), (8)
with the boundary condition at the walls of the form (with 6-0)

€€ 0R,/8z] 13 3= pp,(a) R, (a) (9)

with a— —a for the other wall. The solution of eq. (8) can be obtained straightforwardly in the WKB ap-
proximation, as discussed in ref. [3]. Since we only need R, (r, r) to evaluate the free energy due to the fluc-
tuations we can derive

=)

Rur.n=[ (02 2) 0do, (10)

0

with

r(@;z, z)

1 ( + 2acexp[—24(a)]

= Yeen(d) o exp[=24(a)] {exp[d(a)]chA(z)+a}>, (11)

where the following abbreviations were used

u*(2)=0Q%+Lp(z), (12a)
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A(z):j u(z')dz’, (12b)

a=4iLp(a)/[2u(a)+iLp(a)], (12¢)

and p(z) is again the charge density obtained through the solution of the Poisson-Boltzmann equation with

the appropriate boundary conditions.
Calculation of the coupling integral, eq. (6), is tedious. The final result is

_ kT ji 3/2 kT ]0 2 2 < Lp,(a)
Q= o [Lp(z)]??dz+ 7 ) 0dQ| In{l—a?exp[—24(a)]}-In(l -« Y+In| 1+ 20 , (13)
where L=e2/kTee,. As shown before [3] in all the divergent Q integrals in eq. (13) the upper limit should
be substituted with 1/b, where b is the radius of the ions. This procedure approximately accounts for the short-

range repulsion that was not included explicitly in our calculations thereby insuring the stability of the Coulomb

system.

3. Results

We do not dwell on the overall dependence of the fluctuation part of the free energy on the intersurface sep-

aration, but do analyse only the asymptotic regime a—co.
In the asymptotic limit we have approximately

lim 4(a)~2a/Q*+k*, (14)
where K=\/E\ is the standard inverse Debye length. It is evident that only the second term in eq. (13) con-
tributes significantly to the a dependence of O in this particular limit. In fact we can derive the following

limiting form,
2~ o1 [ ea nT o (15)

0

where we have made an additional assumption that in the a—co limit we have /Lp(a)> % Lp,(a). This as-
amounts to the statement that in a dilute electrolyte the electrostatic screening length right

sumption basically
difference between the surface and bulk elec- |

at the surface is the smallest length involved in the problem. The
trostatic screening is of course a consequence of the specific interactions at the bounding surfaces.
Introducing the substitution ut=Q>+Lp(a), we are finally led to the following asymptotic expression

KT, . [ duexp[—24(w)] KT , exp( —4xa)
=L @) _j( duopl =201, O @ S, (16)

The dependence of the free energy on the intersurface separation is given by the exponential function, its mag- §
nitude, however, depends on the parameters describing the surface and determining the values of p,(a) and
p(a). The above result basically tells us that the interactions between the two surfaces, due to the fluctuations §
in the local charge density in the vicinity of the surfaces, are screened with half the Debye length in between
the surfaces and with the decay length ~1/,/Lp(a) along a single surface.

Recently [2] we have been able to fit the data on the very long-range “hydrophobic” forces acting between 4
hydrophobized mica or silica surfaces [5,6] to a form basically identical to that of eq. (16) in the same asymp- %
totic limit. The effective ionic strength of the medium obtained from the fitted decay rate of the free energy L
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turns out to be on the order of ~10-% M, and is probably due to the ionic impurities present in the “con-
ductivity” water in which the measurements have been performed. On the other hand, for the experimental
cases where the ionic strength was known [ 7], the values of the Debye length obtained from the fit are in perfect
agreement with those computed on the basis of experimental ionic strengths.

The forces due to the fluctuations in the local charge density at the surface described above therefore seem
to be a promising candidate to explain the long-range attraction between hydrophobized surfaces. An expanded
version of this report will be published elsewhere [8].
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